The Spatial Analysis of Time Series
نویسنده
چکیده
In this paper, we propose a method of analyzing time series, called the spatial analysis. The analysis consists mainly of the statistical inference on the distribution given by the expected local time, which we define to be the spatial distribution, of a given time series. The spatial distribution is introduced primarily for the analysis of nonstationary time series whose distributions change over time. However, it is well defined for both stationary and nonstationary time series, and reduces to the time invariant stationary distribution if the underlying time series is indeed stationary. The spatial analysis may therefore be regarded as an extension of the usual inference on the distribution of a stationary time series to accommodate for nonstationary time series. In fact, we show that the concept of the spatial distribution allows us to extend many notions and ideas built upon the presumption of stationarity and make them applicable also for the analysis of nonstationary data. Our approach is nonparametric, and imposes very mild conditions on the underlying time series. In particular, we allow for the observations generated from a wide class of stochastic processes with stationary and mixing increments, or general markov processes including virtually all diffusion models used in practice. For illustration, we provide some empirical applications of our methodology to various topics such as the risk management, distributional dominance and option pricing.
منابع مشابه
Evaluation of temporal-spatial changes of groundwater resources in Kashmar plain based on time series analysis of precipitation and drought data
Groundwater is one of the most important resources of water in the world. Studies show that low rainfall, persistent droughts, and over-exploitation have caused economic and environmental damage. Therefore, this study was conducted to evaluate the effects of rainfall and drought on the groundwater of Kashmar plain as one of the most important fertile plains of Khorasan Razavi in eastern Iran,...
متن کاملA time series of infectious-like events in Australia between 2000 and 2013 leading to extended periods of increased deaths (all-cause mortality) with possible links to increased hospital medical admissions
Background and aims: Trends in deaths and medical admissions in the UK and Europe show evidence for a series of infectious-like events. These events have been overlooked by traditional surveillance methodologies. Preliminary evidence points to a rise in medical admissions in Australia around the same time as those observed in Europe, and this study was aimed to evaluate whether the deaths are o...
متن کاملAnalysis of Educational Services Distribution and Accessibility as Education Quality Indicators: Evidence from Geospatial Analysis and Administrative Time Series Data (Case Study: Gambela City, Gambella Regional State, Ethiopia, East Africa)
It is universally agreed concept that education is a corner stone for socio economic transformation. Education has been recognized as weapon to fight backwardness, poverty and illiteracy for ages. Experience have shown that all the good benefit of education has been assured only when there is quality education. However, there are visible indicators that education quality has not been still a...
متن کاملMitigation of Tropospheric Delay on InSAR Interseismic Displacements
One of the major challenges of Interferometric Synthetic Aperture Radar (InSAR) technique is the existence of tropospheric effect on the results. The tropospheric effect is due to the changes of atmospheric parameters including temperature, pressure, and humidity between the master and slave images. In this research, two different methods based on spatial-temporal filters and calculation of pha...
متن کاملTidal prediction using time series analysis of Buoy observations
Although tidal observations which are extracted from coastal tide gages, have higher accuracy due to their higher sampling rate, installing these types of gages can impose some spatial limitation since we cannot use every part of sea to install them. To solve this limitation, we can employ satellite altimetry observations. However, satellite altimetry observations have lower sampling rate. Acco...
متن کاملApplication of multivariate techniques in-line with spatial regionalization of AOD over Iran
Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005